Category: Building Design and Construction

Sociological changes, new technology in industry and commerce, new building codes, other new laws and regulations, inflationary economies of nations, and advances in building technology place an ever-increasing burden on building designers
and constructors. They need more and more knowledge and skill to cope with the demands placed on them.
The public continually demands more complex buildings than in the past. They must serve more purposes, last longer, and require less maintenance and repair. As in the past, they must look attractive. Yet, both building construction and operating
costs must be kept within acceptable limits or new construction will cease.
To meet this challenge successfully, continual improvements in building design and construction must be made. Building designers and constructors should be alert to these advances and learn how to apply them skillfully.
One advance of note to building design is the adaptation of operations research, or systems design, developed around the middle of the twentieth century and originally
applied with noteworthy results to design of machines and electronic equipment.
In the past, design of a new building was mainly an imitation of the design of an existing building. Innovations were often developed fortuitously and by intuition and were rare occurrences. In contrast, systems design encourages innovation.
It is a precise procedure that guides creativity toward the best decisions. As a result, it can play a significant role in meeting the challenges posed by increasing building complexity and costs. The basic principles of systems design are presented
in this section.

Category: Building Design and Construction Major Concerns with Building Codes

Contractors should have a working knowledge of a variety of building codes. In most cities and municipalities, there is a local building code. It also may be the same as the state code. Local and state codes usually govern most of the construction activities of a contractor, in addition to the requirements of the plans and specifications. The contractor’s task of satisfying code regulations,

View Article...

Category: Building Design and Construction Computer Estimating

There are essentially three types of commercial computer products useful in preparation of cost estimates: Utilities. These are programs that arrange information or do arithmetic; for example, spreadsheets and report generators databases. Most estimating programs fall into the utilities category. Databases. These contain raw information, for example, prices of plumbing fixtures, that the estimator must analyze and choose from. Expert Systems. These are programs

View Article...

Category: Building Design and Construction Reviewing Estimates

All estimates should be reviewed by all responsible parties at every stage. An estimate review should begin with a survey of the verbal description of the work, including all or most of the following: scope statement, assumptions, clarifications, qualifications, and exclusions. As an example, the estimate is to be reviewed for a warehouse to be built in an urban area as part of a

View Article...

Category: Building Design and Construction Sample Estimate

As an example, the following illustrates preparation of an estimate for a trench excavation. The estimate can be regarded as a baseline type or higher type. The discipline approach and crew development technique is used. The estimate begins with a study of information available for the project: From the design documents, the estimator takes off such information as trench depth, length, slopes, soil conditions,

View Article...

Category: Building Design and Construction Estimating Margin (Markup)

Margin comprises three components: indirect costs, company-wide costs, and profit. These are defined in Art. 19.1. Determining Indirect, or Distributable, Costs The techniques used to calculate indirect costs (often called indirects) resemble those used to calculate direct costs (Art. 19.2). Parametric Technique. The indirects calculated by this technique may be expressed in many ways, for example, as a percentage of the direct cost

View Article...

Category: Building Design and Construction Estimating Contingency Costs

These are the costs that must be added to the initially calculated costs to take into account events that are highly likely to occur some time during the course of a project and that will affect project cost (Art. 19.1). Although the effect and the probability of occurrence of each contingency event cannot be predicted, the total effect of all the contingencies on the

View Article...

Category: Building Design and Construction Estimating Direct Costs

Methods for preparing an estimate of direct costs may be based on either or both of two approaches: industry, or facility, approach, and discipline, or trade, approach. For any project, the approach that may be selected depends on user preference and client requirements. If used properly, the two approaches should yield the same result. Industry or Facility Approach. Industry in this case refers

View Article...

Category: Building Design and Construction Composition of Project Price

The total price of a construction project is the sum of direct costs, contingency costs, and margin. Direct costs are the labor, material, and equipment costs of project construction. For example, the direct cost of a foundation of a building includes the following: Costs of formwork, reinforcing steel, and concrete Cost of labor to build and later strip the formwork, and place

View Article...

Category: Building Design and Construction Budget

Costs may be derived from reference materials. R.S. Means publishes cost reference materials in a square foot format and in a unit cost format. Their costs are updated yearly based on construction projects. They include city and regional indexes for both materials and labor. For items which R.S. Means does not provide information, contact a distribution house like Anixter or

View Article...

Category: Building Design and Construction Horizontal Cabling

The Commercial Building Telecommunications Cabling Standard, ANSI/TIA/EIA- 568-A, defines categories for 100- unshielded, twisted-pair cables. The Category 3 designation applies to cables and hardware up to 16 MHz (16 Mbs). The Category 4 designation applies to cables and hardware up to 20 MHz (20 Mbs). The Category 5 designation applies to cables and hardware up to 100 MHz (100 Mbs). The Category 5e designation applies

View Article...