Tag Archive for Tag: Wind

Tag: Wind Wind Protection

For practical design, wind and earthquakes may be treated as horizontal, or lateral, loads. Although wind and seismic loads may have vertical components, these generally are small and readily resisted by columns and bearing walls. Vertical earthquake components can be important in the design of connections as in precast concrete structures. Wind often generates significant uplift forces that require special attention to vertical restraint and

View Article...

Tag: Wind Aerodynamic Analysis of Cable-Suspended Bridges

The wind-induced failure on November 7, 1940, of the Tacoma Narrows Bridge in the state of Washington shocked the engineering profession. Many were surprised to learn that failure of bridges as a result of wind action was not unprecedented. During the slightly more than  12 decades prior to the Tacoma Narrows failure, 10 other bridges were severely damaged or destroyed by wind action

View Article...

Tag: Wind Determination of Wind Loads

Wind loading as described in Art. 9.1 is the basis for design wind loads specified in ‘‘Minimum Design Loads for Buildings and Other Structures,’’ ASCE 7-88, American Society of Civil Engineers. Model building codes specify simplified methods based on these provisions for determining wind loads. These methods can be used for most structures. One such method is incorporated in the ‘‘Uniform Building Code’’ (UBC)

View Article...

Tag: Wind Description of Wind Forces

The magnitude and distribution of wind velocity are the key elements in determining wind design forces. Mountainous or highly developed urban areas provide a rough surface, which slows wind velocity near the surface of the earth and causes wind velocity to increase rapidly with height above the earth’s surface. Large, level open areas and bodies of water provide little resistance to the surface wind

View Article...

Tag: Wind Wind and Seismic Stresses

The AISC ASD specification permits allowable stresses due to wind or earthquake forces, acting alone or in combination with dead and live load, to be increased by one-third (Art. 6.11). The required section computed on this basis, however, may not be less than that required for the design dead, live, and impact loads computed without the one-third stress increase. This

View Article...

Tag: Wind Wind Loads

Wind loads are randomly applied dynamic loads. The intensity of the wind pressure on the surface of a structure depends on wind velocity, air density, orientation of the structure, area of contact surface, and shape of the structure. Because of the complexity involved in defining both the dynamic wind load and the behavior of an indeterminate steel structure when subjected to wind loads, the

View Article...